转载自:什么是纳维-斯托克斯方程?在建模仿真中有哪些应用? – 知乎 (zhihu.com)


什么是纳维-斯托克斯方程?

纳维-斯托克斯方程(英文名:Navier-Stokes equations),简称 N-S 方程。

N-S 方程是用于描述流体运动的方程,可以看作是流体运动的牛顿第二定律。对于可压缩的牛顿流体,可以得到

其中,u 是流体速度,p 是流体压力,ρ 是流体密度,μ 是流体动力黏度。式中各项分别对应于惯性力(1)、压力(2)、黏性力(3),以及作用在流体上的外力(4)。纳维-斯托克斯方程是由纳维、泊松、圣维南和斯托克斯于 1827 年到 1845 年之间推导出来的。

这些方程总是要与连续性方程同时进行求解:

[公式] 纳维-斯托克斯方程表示动量守恒,而连续性方程则表示质量守恒

纳维-斯托克斯方程在建模仿真中的应用

纳维-斯托克斯方程是流体流动建模的核心。在特定的边界条件(如入口、出口和壁)下求解这些方程,可以预测给定几何体中的流体速度和压力。由于这些方程本身的复杂性,我们只能得到非常有限的解析解。例如,对于两个平行板之间的流动或圆管内的流动,方程的求解会相对容易一些;但对于更为复杂的几何结构,求解方程会非常困难。

示例:流经后台阶的层流

在下面的例子中,我们对一个计算域中的纳维-斯托克斯方程(以下简称“NS 方程”)和质量守恒方程进行数值求解,为此需要一组边界条件:

模型中,在入口指定了流体速度,在出口指定了压力,并指定了无滑移壁面边界条件(即,速度为零)。在层流流态和恒定边界条件下,稳态 NS((1)中的时间相关导数设为零)和连续性方程的数值解如下:

速度大小分布和流线图。
压力场。

纳维-斯托克斯方程的各种形式

根据研究的流态,我们通常可以将这些方程进行简化。在某些情况下,可能还需要附加方程。在流体动力学领域,人们常使用无因次数(例如雷诺数和马赫数)对不同的流态进行分类。

关于雷诺数和马赫数

雷诺数 Re=ρUL/μ 是惯性力(1)与黏性力(3)的比值,用于测量流体的湍流程度。低雷诺数的流动是层流,高雷诺数的流动为湍流。

马赫数 M=U/c 是流体速度 U 与该流体中声速 c 的比值,用于测量流体的压缩性。

在后台阶流动示例中,Re = 100 且 M = 0.001,表明这是一个层流,并且几乎不可压缩。对于不可压缩流,由连续性方程可得:

[公式]

对于不可压缩流的情况,由于速度散度等于零,我们可以将

[公式]

这一项从 NS 方程的黏性力项中去除。

在下一节,我们将研究一些特殊的流态。

低雷诺数/蠕动流

当雷诺数非常小(Re1)时,与黏性力(3)相比,惯性力(1)会很小,在求解 NS 方程时可以将这些力忽略。为了对这一流态进行说明,我们来看一看美国加州大学圣塔芭芭拉分校的 Arturo Keller、Maria Auset 和 Sanya Sirivithayapakorn 进行的孔隙尺度流动实验。

图形显示孔隙尺度的流动实验中的边界条件。

关于该实验

实验研究的区域大小为 640μm x 320μm。水从右向左流动,穿过整个几何体。孔隙中的水流不会渗透固体部分(上图中的灰色区域)。入口和出口的流体压力为已知条件。由于通道的最大宽度为 0.1 毫米,并且最大速度小于 [公式] m/s,因此最大雷诺数小于 0.01。因为没有外力作用(重力忽略不计),所以力项(4)也等于零。

由此可以将 NS 方程简化为:

实验建模

下图显示仿真得到的等流速线和压力场(高度)。

由于入口的压力比出口高,这就产生了压力驱动的流体流动。这些结果表明,NS 方程中的压力(2)和黏性力(3)之间存在平衡。在沿较小通道的位置,其黏性扩散的影响更加明显,从而导致压降也更大。

高雷诺数/湍流

在雷诺数非常高的工程应用中,惯性力(1)远大于黏性力(3)。这种湍流问题在本质上是瞬态的;需要使用足够精细的网格,才能求解最小涡流的大小。

使用 NS 方程计算此类问题,往往会超出当今大多数计算机和超级计算机的计算能力。因此,我们可以改用纳维-斯托克斯方程的雷诺平均纳维-斯托克斯(RANS)公式,对速度和压力场取时间平均值。

如此一来,我们便能够基于相对粗糙的网格以静态方式计算这些时均方程,从而大大降低此类仿真对计算能力的要求,并显著缩短计算时间(通常,二维流动需要几分钟,三维流动则需要几分钟到几天不等)。

雷诺平均纳维-斯托克斯(RANS)公式如下:

其中,U 和 P 分别是时均速度和压力。μT 项表示湍流黏度,即小尺度的瞬态速度波动的影响,RANS 方程不会求解这种波动。

湍流黏度 μT 通过湍流模型进行计算,最常用的是 k-ε 湍流模型(众多 RANS 湍流模型之一)。由于这个模型不仅具有较好的稳定性,还能有效节省计算资源,因此常被用于工业应用领域。该模型还求解两个附加方程:湍流动能 k 的传递和湍流耗散 ϵ

为了进一步说明这一流态,我们来看看在一个比孔隙尺度流动大得多的几何体中的流动情况:一个典型的臭氧净化反应器。这个反应器长约 40 米,看起来像一个迷宫,其中使用部分墙壁或挡板将空间分成房间大小的多个隔间。根据入口速度和直径(本例中分别为 0.1 m/s 和 0.4 m),相应的雷诺数为 400,000。通过该模型可以求解时均速度 U、压力 P、湍流动能 k 以及湍流耗散 ϵ

仿真结果显示了流型、流速和湍流黏度 μT。

流体压缩性

流体压缩性可以通过马赫数进行测量。前面的所有例子都是弱可压缩流体,也就是说马赫数小于 0.3。

不可压缩流

当马赫数很低时,我们可以假设流体是不可压缩的。对于压缩性比气体小得多的液体来说,这通常是一个良好的近似。在这种情况下,假设密度恒定,连续性方程可以简化为 ∇⋅u=0。在蠕动流例子中,水以低速流经多孔介质,这就是一个很好的不可压缩流示例。

可压缩流

在某些情况下,流速非常大,并引起流体的密度和温度发生显著变化。当 M<0.3 时,这些变化可以忽略不计。然而,当 M>0.3 时,速度、压力和温度场之间的耦合会变得非常强,此时需要同时求解纳维-斯托克斯方程、连续性方程以及能量方程(流体传热方程)。通过能量方程,我们可以预测流体中的温度,这是计算温度相关的材料属性所需的参数。

可压缩流既可以是层流,也可以是湍流。在下一个示例中,我们来看看扩散器(一个收缩和扩散的喷嘴)中的高速湍流气流。

扩散器是一个跨音速流动环境,从这个意义上来说,尽管入口的气体是亚音速流动,但由于收缩和较低的出口压力,流动会加速并在喷嘴喉部变为音速流动(M = 1)。

以上三个绘图的结果表现出很强的相似性,证实了速度、压力和温度场之间的强耦合关系。在一小段区域的超音速流动(M > 1)之后,气流通过正激波,流速再次变回亚音速。M. Sajben 及其同事已通过大量的实验和数值仿真对这一体系进行了研究 [1-6]。

纳维-斯托克斯方程无法求解的流态

仅当系统的特征物理长度尺度远大于流体分子的平均自由程时,纳维-斯托克斯方程才成立。这种情况下的流体称为连续介质。平均自由程 λ 与特征长度尺度 L 的比值称为克努森数 Kn=λ/L

当 Kn<0.01 时,NS 方程成立。当 0.01<Kn<0.1 时,这些方程仍然适用,但需要施加特殊的边界条件。当 Kn>0.1 时,方程不成立。例如,在环境压力为 1 atm 的情况下,空气分子的平均自由程是 68 纳米。因此,模型的特征长度应大于 6.8 μm,NS 方程才能成立。

经授权转载自 COMSOL 多物理场仿真百科,原文链接:

多物理场仿真百科”旨在帮助大家了解各种相互作用的物理场背后的基本概念和理论,并提供多物理场耦合仿真的相关知识。

理解什么是多物理场以及多物理场耦合方法,从传递现象、电磁场理论和固体力学等第一性原理出发,将其作为实现软件功能的基本构成要素,根据具体的仿真需求,用户可以条理清晰地将这些基本要素组合在一起来解决自己的问题。

发表评论

您的电子邮箱地址不会被公开。